China Standard Svh3 Slewing Worm Gear Drive for Solar Tracker spiral bevel gear

Product Description

Rotary drive is a new type of rotary drive, usually called rotary support, which consists of worm, rotary support, housing, motor and other components. Since the core components are rotary bearings, they can withstand axial forces, radial forces and overturning moments at the same time. Compared with the traditional rotary products, the new rotary drive is convenient to install, maintain and install. Rotary drives are widely used in PV, CPV, STP solar tracking systems and building applications, including truck cranes, lifts, turntables, port machinery, modular vehicles, small wind power systems and satellite communications

Slewing drive is a special slewing reduction product derived from the slewing bearing product with high integration, large reduction ratio, simple structure, easy use and maintenance, because the slewing ring is used as the follower and the frame basis, the slewing ring is used The inner and outer rings respectively realize the input and output of driving power, so that the slewing drive can not only realize 360-degree rotation without stopping point, but also can install a driving power source on the basis of the slewing ring frame at the same time, so its transmission efficiency is high and it is a mechanical transmission The new member of the device family. Because it is essentially a reduction gear, it can also be called a rotary reducer, a turntable reducer or a drive turntable.

Slewing drive can be divided into gear drive and worm gear drive according to the transmission form. According to the different closed form of the transmission pair, it can be divided into open and closed. The simplest form of slewing drive is used in excavators, tower cranes, etc. The drive turntable on the construction machinery product is the last link of the reduction transmission chain. This kind of rotary drive is an open gear transmission, and its front end needs to be equipped with a planetary reducer with a large reduction ratio as its power input, so it can only be called In order to expand the application range of such products, and further improve the convenience of product use and maintenance, the slewing drive with integrated worm gear transmission was developed for the embryonic form of slewing drive. In order to further improve the driving capability of the product, the enveloping worm drive It is also applied to such products. The rotary drive equipped with an envelope worm not only increases the driving torque, but also further improves the driving accuracy. It can also be digitally controlled, so it is widely used in tracking and fine-tuning devices on solar and wind power generation equipment. , In addition, it has good application effects in the fields of robots, radar, low-speed heavy-duty lifting, lifting equipment, and precision CNC turntables.

1, What are the differentiates between CHINAMFG with other supplier?
Profession and reliability.
Our advantages are multiple available technologies, strong quality assurance, and good at project & supply chain management.

2, Is there a cost for CHINAMFG service?
There is no additional cost above the product and tooling price except third party service.

3, Will I be able to visit the supplier myself?
First, all of our supply partner has undergone a series of screening and audit process, we can provide complete audit report to you.
Secondly, if you want to perform your own independent supplier audit procedure, our representatives can accompany and assistant with you to achieve it.

4, How to deal with the quality problem?
A. With our partners we perfom APQP at early stage in each project.
B. Our factory must fully understand the quality concerns from customers and implement product & process quality requirements.
C. Our quality professionals who perfom patrol inspection in our factories.
We perform final inspectors before the goods are packed.
D. We have 3rd party inspectors who perform final audit checks on the packed goods prior to dispatch from China.

5, Can you take responsibility for me?
Of course, I’m happy to help you! But I just take responsitility fo my products.
Please offer a test report.
If it was our fault, absolutely we can make a compensation for you, my friend!

6, Do you like to serve the client only with small order?
We enjoy to grow up together with all our clients whatever big or small.
Your will become bigger and bigger to be with us.



Place of Origin



Coresun Drive


Dual Axis

IP Class


Output Torque


Tilting Moment Torque


Holding Torque


Mounting Bolts


Output Speed


Gear Ratio




3″ SVH3 Slewing Drive Production Photo

Coresun Drive processes the Slewing Drive Motor metallographic testing to ensure the quality of raw material and follows the standard inspection specification.


It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Holding Torque: 1100n.M
Tilting Moment Torque: 2200n.M
Output Torque: 446n.M
Output Speed: 1rpm
IP Class: IP65
Slef-Locking: Yes


Customized Request

gear drive

What are the noise and vibration levels in gear drives

What are the noise and vibration levels in gear drives?

The noise and vibration levels in gear drives can vary depending on various factors. Here’s a detailed explanation:

1. Gear Design and Tooth Profile:

– The gear design and tooth profile can significantly impact the noise and vibration levels in gear drives.

– Well-designed gear drives with optimized tooth profiles, such as involute or helical gears, can help minimize noise and vibration.

– Gear tooth modifications, such as crowning or tip relief, can also improve tooth contact and reduce noise and vibration.

2. Gear Quality and Manufacturing:

– The quality of gear manufacturing plays a crucial role in noise and vibration levels.

– Higher quality gears with tighter tolerances and better surface finishes tend to generate less noise and vibration.

– Precise gear manufacturing processes, such as grinding or honing, can improve gear accuracy and reduce noise.

3. Lubrication and Wear:

– Proper lubrication is essential for reducing noise and vibration in gear drives.

– Insufficient or degraded lubrication can lead to increased friction and wear, resulting in higher noise and vibration levels.

– Regular maintenance, including lubricant replacement and monitoring, helps ensure optimal gear drive performance and minimize noise and vibration.

4. Gear Misalignment and Assembly:

– Misalignment of gears during assembly can introduce noise and vibration issues.

– Proper alignment and precise assembly techniques are crucial to minimize gear misalignment and associated noise and vibration levels.

– Adequate preloading of gears and ensuring proper meshing engagement can also help reduce noise and vibration.

5. Operating Conditions:

– The operating conditions, such as speed, load, and temperature, can influence noise and vibration levels in gear drives.

– Higher speeds and heavier loads can increase the likelihood of noise and vibration generation.

– Elevated temperatures can also affect gear performance and contribute to increased noise and vibration.

6. Gear Drive Maintenance:

– Regular maintenance and inspection of gear drives are essential to identify and address any issues contributing to noise and vibration.

– Maintenance activities, such as gear re-alignment, lubricant replacement, and gear tooth inspection, can help minimize noise and vibration levels.

– Timely replacement of worn or damaged gears can also help maintain optimal gear drive performance.

It’s important to note that while efforts can be made to reduce noise and vibration in gear drives, it may not be possible to completely eliminate them. The specific noise and vibration levels in gear drives can vary depending on the application, gear type, design, manufacturing quality, and operating conditions. Manufacturers and engineers often employ noise and vibration analysis techniques and standards to ensure that gear drives meet acceptable noise and vibration criteria for their intended applications.

gear drive

What is the role of gear drives in automotive transmissions?

Gear drives play a crucial role in automotive transmissions. Here’s a detailed explanation:

1. Speed and Torque Conversion:

– Automotive transmissions use gear drives to convert the engine’s rotational speed and torque into the appropriate output for the wheels.

– By selecting different gear ratios, gear drives enable the transmission to adjust the speed and torque delivered to the wheels based on driving conditions and desired performance.

2. Gear Shifting:

– Gear drives facilitate gear shifting, allowing the driver to select different gear ratios to match the vehicle’s speed and load requirements.

– Depending on the transmission type (manual or automatic), gear drives are responsible for engaging and disengaging the gears during gear shifting operations.

3. Power Transmission:

– Gear drives transmit power from the engine to the wheels, enabling the vehicle to move.

– They transfer torque from the engine’s crankshaft to the transmission output shaft, which is connected to the wheels through the drivetrain.

4. Forward and Reverse Operation:

– Gear drives in automotive transmissions allow the vehicle to move both forward and backward.

– By engaging different gear combinations, the transmission can reverse the direction of power flow, enabling the vehicle to go in reverse.

5. Gear Reduction and Overdrive:

– Gear drives in transmissions provide gear reduction or overdrive capabilities.

– Gear reduction allows the engine to operate at higher RPMs while reducing the output speed, providing more torque for climbing steep inclines or towing heavy loads.

– Overdrive gears, on the other hand, allow the engine to operate at lower RPMs, reducing fuel consumption and engine wear during highway cruising.

6. Synchronizing and Noise Reduction:

– In manual transmissions, gear drives incorporate synchronizer mechanisms to facilitate smooth gear engagements and minimize gear clash.

– These synchronizers match the speeds of the gears before engagement, reducing wear on the gear teeth and enhancing shifting comfort.

– Gear drives can also incorporate noise reduction measures, such as helical or hypoid gears, to minimize gear noise and vibration during operation.

Overall, gear drives in automotive transmissions are essential for speed and torque conversion, gear shifting, power transmission, and enabling the vehicle to move in both forward and reverse directions. They provide the necessary mechanical advantage and flexibility to optimize engine performance, fuel efficiency, and driving dynamics, making them a fundamental component in the operation of automobiles.

gear drive

What are the advantages of using a gear drive in mechanical systems?

Using a gear drive in mechanical systems offers several advantages. Here’s a detailed explanation of the key advantages:

1. Power Transmission:

– Gear drives provide an efficient and reliable means of transmitting power between rotating shafts.

– They can transmit high torque levels, allowing for the efficient transfer of power in various applications.

2. Speed Control:

– Gear drives allow for precise control over rotational speed and provide different speed reduction or increase options through gear ratio selection.

– This speed control capability is crucial in applications that require specific speed requirements or variable speed control.

3. Torque Amplification:

– Gear drives can amplify torque, enabling the conversion of low-torque, high-speed input into high-torque, low-speed output.

– This torque amplification is beneficial in applications that require high torque for heavy loads or starting/stopping operations.

4. Directional Control:

– Gear drives can change the direction of rotational motion between input and output shafts.

– They allow for the transmission of motion in a desired direction, making them essential in applications that require reversing or changing the direction of rotation.

5. Compact Design:

– Gear drives offer a compact and space-efficient solution for power transmission.

– They can transmit power in a relatively small footprint, making them suitable for applications with limited space or where size and weight are critical factors.

6. Mechanical Efficiency:

– Gear drives have high mechanical efficiency, meaning they minimize power losses during transmission.

– With proper lubrication and maintenance, gear drives can achieve efficiency levels above 90%, resulting in energy savings and reduced operating costs.

7. Versatility:

– Gear drives are versatile and can be adapted to various applications and industries.

– They are used in a wide range of machinery, vehicles, industrial equipment, and even in everyday devices like watches and bicycles.

– Different types of gears and gear arrangements allow for customization to meet specific needs, such as high speed, high torque, or precise motion control.

In summary, using a gear drive in mechanical systems provides advantages such as efficient power transmission, speed control, torque amplification, directional control, compact design, high mechanical efficiency, and versatility. These advantages make gear drives a fundamental component in numerous applications, contributing to the reliable and efficient operation of various mechanical systems.

China Standard Svh3 Slewing Worm Gear Drive for Solar Tracker spiral bevel gearChina Standard Svh3 Slewing Worm Gear Drive for Solar Tracker spiral bevel gear
editor by Dream 2024-05-13


Contact Us

servo gearhead

As one of leading rservo gearhead manufacturers, suppliers and exporters of mechanical products, We offer servo gearhead and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of servo gearhead

Recent Posts