China supplier CZPT Various Integrated Solution for Harmonic Drives with Stepper Servo Motors spurs gear

Product Description

Product Description:

1.Flexspline is a hollow flanging standard cylinder structure.

2.There is a large-diameter hollow shaft hole in the middle of the cam of the wave generator. The internal design of the reducer has a support bearing.

3.It has a fully sealed structure and is easy to install. It is very suitable for the occasions where the wire needs to be threaded from the center of the reducer.

Advantages:

The first:High precision,high torque

The second:dedicated technical personnel can be on-the-go to provide design solutions

The third:Factory direct sales fine workmanship durable quality assurance

The fourth:Product quality issues have a one-year warranty time, can be returned for replacement or repair

Company profile:

 

HangZhou CHINAMFG Technology Co., Ltd. established in 2014, is committed to the R & D plant of high-precision transmission components. At present, the annual production capacity can reach 45000 sets of harmonic reducers. We firmly believe in quality first. All links from raw materials to finished products are strictly supervised and controlled, which provides a CHINAMFG foundation for product quality. Our products are sold all over the country and abroad.

The harmonic reducer and other high-precision transmission components were independently developed by the company. Our company spends 20% of its sales every year on the research and development of new technologies in the industry. There are 5 people in R & D.

Our advantage is as below:

1.7 years of marketing experience

2. 5-person R & D team to provide you with technical support

3. It is sold at home and abroad and exported to Turkey and Ireland

4. The product quality is guaranteed with a one-year warranty

5. Products can be customized

Strength factory:

Our plant has an entire campus The number of workshops is around 300 Whether it’s from the production of raw materials and the procurement of raw materials to the inspection of finished products, we’re doing it ourselves. There is a complete production system

HST-III Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CHINAMFG torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 10000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 100 10.2 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
40 100 308 37.2 660 67 432 44 1232 126.7 4000 3000 ≤30 15000

HSG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CHINAMFG torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 7 0.7 23 2.3 9 0.9 46 4.7 14000 8500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 10000 7300 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 10000 6500 ≤20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 7500 5600 ≤20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 7000 4800 ≤20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
40 100 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000

Exhibition:
Application case:

FQA:
Q: What should I provide when I choose gearbox/speed reducer?
A: The best way is to provide the motor drawing with parameter. Our engineer will check and recommend the most suitable gearbox model for your refer.
Or you can also provide below specification as well:
1) Type, model and torque.
2) Ratio or output speed
3) Working condition and connection method
4) Quality and installed machine name
5) Input mode and input speed
6) Motor brand model or flange and motor shaft size

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery, Hst-IV
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gear drive

What safety precautions should be taken when working with gear drives?

Working with gear drives requires adherence to specific safety precautions to ensure the well-being of individuals involved. Here’s a detailed explanation:

1. Personal Protective Equipment (PPE):

– Wear appropriate personal protective equipment, such as safety glasses or goggles, gloves, and close-toed shoes, to protect against potential hazards.

– Use hearing protection if working in close proximity to gear drives that produce excessive noise.

2. Lockout/Tagout:

– Implement lockout/tagout procedures to isolate and de-energize gear drives before performing maintenance or repair tasks.

– This ensures that the equipment cannot be accidentally energized, preventing potential injury from unexpected movement or activation.

3. Training and Familiarity:

– Ensure that personnel working with gear drives are adequately trained and familiar with the equipment’s operation and safety procedures.

– Provide training on proper use, maintenance, and potential risks associated with gear drives.

4. Risk Assessment:

– Conduct a thorough risk assessment of the work area and gear drives to identify potential hazards and implement appropriate control measures.

– Address issues such as pinch points, entanglement hazards, and potential for falling objects.

5. Proper Installation and Maintenance:

– Follow manufacturer guidelines for the installation, setup, and maintenance of gear drives.

– Regularly inspect gears, shafts, bearings, and lubrication systems for signs of wear, damage, or malfunction.

– Perform maintenance tasks only when the gear drive is de-energized and properly locked out.

6. Guarding and Enclosures:

– Install appropriate guards and enclosures around gear drives to prevent accidental contact with moving parts.

– Ensure that guards are securely in place and not removed or bypassed during operation.

7. Proper Lifting and Handling:

– Use proper lifting techniques and equipment when moving or installing gear drives.

– Gear drives can be heavy and require mechanical means, such as cranes or forklifts, for safe handling.

8. Reporting and Addressing Safety Concerns:

– Encourage a culture of reporting and addressing safety concerns related to gear drives.

– Promptly address any identified safety issues or incidents to prevent future accidents.

It is essential to remember that these safety precautions serve as general guidelines, and specific precautions may vary depending on the type and size of the gear drives and the working environment. Always refer to the manufacturer’s instructions and consult with relevant safety professionals to ensure compliance with specific safety requirements.

gear drive

How do gear drives contribute to energy efficiency?

Gear drives play a significant role in improving energy efficiency in various mechanical systems. Here’s a detailed explanation of how gear drives contribute to energy efficiency:

1. Power Transmission:

– Gear drives efficiently transmit power from the input source to the output, allowing for effective energy transfer.

– They can handle high torque and transmit power over long distances with minimal energy loss.

2. Mechanical Advantage:

– Gear drives provide mechanical advantage by altering the speed and torque of the power transmission.

– By using different gear ratios, gear drives can match the mechanical requirements of the load, optimizing energy usage.

3. Efficiency of Gear Teeth:

– Well-designed and properly lubricated gear teeth can achieve high levels of efficiency.

– Modern gear drives are manufactured with precision to minimize friction and maximize power transmission efficiency.

4. Multiple Stages:

– Gear drives can be configured with multiple stages, each with different gear ratios.

– By dividing the total gear reduction into multiple stages, each stage can operate at a higher efficiency, resulting in improved overall energy efficiency.

5. Lubrication:

– Proper lubrication of gear drives reduces friction between the gear teeth, minimizing energy losses due to heat and wear.

– High-quality lubricants with appropriate viscosity and additives can enhance gear drive efficiency and extend their lifespan.

6. Maintenance:

– Regular maintenance practices, such as gear inspection, lubricant monitoring, and alignment checks, contribute to sustained energy efficiency.

– Timely identification and resolution of issues, such as misalignment or worn gears, help maintain optimal gear drive performance.

7. Design Optimization:

– Gear drives can be optimized for specific applications to maximize energy efficiency.

– Factors such as gear material selection, gear tooth profile design, and bearing choices can be tailored to minimize energy losses and improve overall efficiency.

By leveraging the inherent mechanical advantages and optimizing design and maintenance practices, gear drives significantly contribute to energy efficiency in various mechanical systems. Their ability to efficiently transmit power, adapt to different load requirements, and minimize energy losses through proper lubrication and maintenance make them a reliable and energy-efficient choice for power transmission applications.

gear drive

What materials are commonly used in the manufacturing of gear drives?

When it comes to the manufacturing of gear drives, various materials are commonly used based on their specific properties and suitability for the application. Here’s a detailed explanation of some commonly used materials:

1. Steel:

– Steel is one of the most widely used materials for gear manufacturing.

– It offers excellent strength, durability, and wear resistance.

– Different types of steel, such as carbon steel, alloy steel, and stainless steel, may be used depending on the application requirements.

– Steel gears are commonly found in industrial machinery, automotive transmissions, and heavy-duty applications.

2. Cast Iron:

– Cast iron is another popular material for gear drives.

– It provides good strength, wear resistance, and damping properties.

– Cast iron gears are often used in applications that require high loads and shock absorption, such as in heavy machinery and gearboxes.

3. Bronze:

– Bronze, specifically phosphor bronze, is commonly used for gear manufacturing.

– Bronze offers good wear resistance, low friction, and excellent self-lubricating properties.

– It is often used in applications where quiet operation and resistance to galling or seizing are important, such as in small gearboxes and precision equipment.

4. Plastics:

– Plastics, such as nylon (polyamide) and acetal (polyoxymethylene), are used for manufacturing gears in certain applications.

– Plastic gears offer advantages like low noise, self-lubrication, corrosion resistance, and the ability to run without external lubrication.

– They are commonly used in light-duty applications, consumer electronics, and instruments where weight reduction and cost-effectiveness are important.

5. Composite Materials:

– Composite materials, such as carbon fiber reinforced polymers, are occasionally used in high-performance gear applications.

– They offer exceptional strength-to-weight ratio, high stiffness, and resistance to wear and fatigue.

– Composite material gears are typically found in aerospace, motorsports, and other specialized applications where lightweight and high-performance requirements are critical.

These are just a few examples of the materials commonly used in the manufacturing of gear drives. The selection of the material depends on factors like load capacity, desired performance, operating conditions, cost considerations, and the specific requirements of the application. It’s important to choose a material that provides the necessary strength, wear resistance, and other properties to ensure reliable and efficient gear operation.

China supplier CZPT Various Integrated Solution for Harmonic Drives with Stepper Servo Motors spurs gearChina supplier CZPT Various Integrated Solution for Harmonic Drives with Stepper Servo Motors spurs gear
editor by Dream 2024-05-07

Tags:

Contact Us

servo gearhead

As one of leading rservo gearhead manufacturers, suppliers and exporters of mechanical products, We offer servo gearhead and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of servo gearhead

Recent Posts